1,234 research outputs found

    Nonlinear motion and mechanical mixing in as-grown GaAs nanowires

    Get PDF
    We report nonlinear behavior in the motion of driven nanowire cantilevers. The nonlinearity can be described by the Duffing equation and is used to demonstrate mechanical mixing of two distinct excitation frequencies. Furthermore, we demonstrate that the nonlinearity can be used to amplify a signal at a frequency close to the mechanical resonance of the nanowire oscillator. Up to 26 dB of amplitude gain are demonstrated in this way

    Observation of vortex-nucleated magnetization reversal in individual ferromagnetic nanotubes

    Get PDF
    The reversal of a uniform axial magnetization in a ferromagnetic nanotube (FNT) has been predicted to nucleate and propagate through vortex domains forming at the ends. In dynamic cantilever magnetometry measurements of individual FNTs, we identify the entry of these vortices as a function of applied magnetic field and show that they mark the nucleation of magnetization reversal. We find that the entry field depends sensitively on the angle between the end surface of the FNT and the applied field. Micromagnetic simulations substantiate the experimental results and highlight the importance of the ends in determining the reversal process. The control over end vortex formation enabled by our findings is promising for the production of FNTs with tailored reversal properties.Comment: 20 pages, 13 figure

    South African fireweed Senecio madagascariensis (Asteraceae) in Argentina: Relevance of chromosome studies to its systematics

    Get PDF
    The systematic identity of Senecio madagascariensis is ratified against the opinion that it is conspecific with Senecio inaequidens. Both species are native to South Africa and have been merged in the 'Senecio inaequidens complex', a group of entities difficult to distinguish from each other. Senecio madagascariensis is widespread in South America and Australia, where it is an invasive weed. Mitotic and meiotic studies were conducted on Argentinian material; chromosome counts solved the chromosome number controversy, validating 2n = 20. The karyotype was symmetrical, composed of ten pairs of metacentric chromosomes varying from 1.62 to 2.38 ÎĽm in length. The most frequent number of satellited chromosomes was three, but their position was difficult to assign. Meiosis was regular, with a configuration of ten predominantly open bivalents. Univalents and quadrivalents were rarely observed. High frequencies of secondary associations of bivalents, chromosome asynchrony and bivalent grouping were documented, reinforcing the hypothesis that x = 5 is the basic chromosome number. Pollen stainability ranged from 94 to 99%. The relevance of chromosomal studies in the circumscription of S. madagascariensis is discussed. Hybridization and polyploidy, as principal evolutionary forces in this genus, explain the systematic difficulties.Facultad de Ciencias Naturales y Muse

    Deep cytogenetics analysis reveals meiotic recombination depletion in species of Senecio (Asteraceae)

    Get PDF
    Background: Senecio is the largest genus in the Asteraceae family growing in all environments around the world. It displays taxonomic and systematical difficulties. Cytogenetic knowledge of this genus is ancient, scarce and mainly restricted to chromosome number records. Results: In this study we analyzed chromosome number, meiotic configuration, bivalent morphology, meiotic behavior and pollen grain stainability on 100 accessions of 27 different polyploid Senecio L. sect Senecio entities. Median, standard deviation and mode were calculated for number and position of chiasmata and meiotic recombination was statistically evaluated. Although high frequency of multivalents and associated meiotic irregularities are expected in high polyploids, bivalents predominance and, consequently, regular meiosis were observed, with normal sporogenesis and high pollen grain stainability. Conclusion: Depletion in the total chiasmata was significant only in some species but the terminal position was preferential in all the entities analyzed, indicating significant reduction in recombination. The regular meiosis observed suggest that intra and intergenomic reorganization process occur quickly and efficiently in this genus. Mechanisms of diploidization, common to all polyploids, are reinforced by the strong reduction in crossing-over rushing polyploids stabilization.Facultad de Ciencias Naturales y Muse

    South African fireweed Senecio madagascariensis (Asteraceae) in Argentina: Relevance of chromosome studies to its systematics

    Get PDF
    The systematic identity of Senecio madagascariensis is ratified against the opinion that it is conspecific with Senecio inaequidens. Both species are native to South Africa and have been merged in the 'Senecio inaequidens complex', a group of entities difficult to distinguish from each other. Senecio madagascariensis is widespread in South America and Australia, where it is an invasive weed. Mitotic and meiotic studies were conducted on Argentinian material; chromosome counts solved the chromosome number controversy, validating 2n = 20. The karyotype was symmetrical, composed of ten pairs of metacentric chromosomes varying from 1.62 to 2.38 ÎĽm in length. The most frequent number of satellited chromosomes was three, but their position was difficult to assign. Meiosis was regular, with a configuration of ten predominantly open bivalents. Univalents and quadrivalents were rarely observed. High frequencies of secondary associations of bivalents, chromosome asynchrony and bivalent grouping were documented, reinforcing the hypothesis that x = 5 is the basic chromosome number. Pollen stainability ranged from 94 to 99%. The relevance of chromosomal studies in the circumscription of S. madagascariensis is discussed. Hybridization and polyploidy, as principal evolutionary forces in this genus, explain the systematic difficulties.Facultad de Ciencias Naturales y Muse

    Imaging magnetic vortex configurations in ferromagnetic nanotubes

    Get PDF
    We image the remnant magnetization configurations of CoFeB and permalloy nanotubes (NTs) using x-ray magnetic circular dichroism photo-emission electron microscopy. The images provide direct evidence for flux-closure configurations, including a global vortex state, in which magnetization points circumferentially around the NT axis. Furthermore, micromagnetic simulations predict and measurements confirm that vortex states can be programmed as the equilibrium remnant magnetization configurations by reducing the NT aspect ratio.Comment: 14 pages, 4 figures, link to supplementary informatio

    Magnetization reversal of an individual exchange biased permalloy nanotube

    Get PDF
    We investigate the magnetization reversal mechanism in an individual permalloy (Py) nanotube (NT) using a hybrid magnetometer consisting of a nanometer-scale SQUID (nanoSQUID) and a cantilever torque sensor. The Py NT is affixed to the tip of a Si cantilever and positioned in order to optimally couple its stray flux into a Nb nanoSQUID. We are thus able to measure both the NT's volume magnetization by dynamic cantilever magnetometry and its stray flux using the nanoSQUID. We observe a training effect and temperature dependence in the magnetic hysteresis, suggesting an exchange bias. We find a low blocking temperature TB=18±2T_B = 18 \pm 2 K, indicating the presence of a thin antiferromagnetic native oxide, as confirmed by X-ray absorption spectroscopy on similar samples. Furthermore, we measure changes in the shape of the magnetic hysteresis as a function of temperature and increased training. These observations show that the presence of a thin exchange-coupled native oxide modifies the magnetization reversal process at low temperatures. Complementary information obtained via cantilever and nanoSQUID magnetometry allows us to conclude that, in the absence of exchange coupling, this reversal process is nucleated at the NT's ends and propagates along its length as predicted by theory.Comment: 8 pages, 4 figure

    Imaging stray magnetic field of individual ferromagnetic nanotubes

    Get PDF
    We use a scanning nanometer-scale superconducting quantum interference device to map the stray magnetic field produced by individual ferromagnetic nanotubes (FNTs) as a function of applied magnetic field. The images are taken as each FNT is led through magnetic reversal and are compared with micromagnetic simulations, which correspond to specific magnetization configurations. In magnetic fields applied perpendicular to the FNT long axis, their magnetization appears to reverse through vortex states, i.e.\ configurations with vortex end domains or -- in the case of a sufficiently short FNT -- with a single global vortex. Geometrical imperfections in the samples and the resulting distortion of idealized mangetization configurations influence the measured stray-field patterns.Comment: 14 pages, 4 figure

    Non-perturbative effects in semi-leptonic B_c decays

    Get PDF
    We discuss the impact of the soft degrees of freedom inside the B_c meson on its rate in the semi-leptonic decay B_c -> X l nu_l where X denotes light hadrons below the D^0 threshold. In particular we identify contributions involving soft hadrons which are non-vanishing in the limit of massless leptons. These contributions become relevant for a measurement of the purely leptonic B_c decay rate, which due to helicity suppression involves a factor m_l^2 and thus is much smaller than the contributions involving soft hadrons.Comment: LaTeX, 22 pages, 1 figur
    • …
    corecore